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PREFACE

One year age I had never heard of latent trait theory, an item
characteristic curve, or Fred Lord. On my first reading of Lord and
' Novick (1968) Chapters 16 and 17, I understood absolutely nothing.
After several hours of study on my second reading, I finally comprehended
one simple equatioh. During the next’ several months I reread parts
of Lord and Novick as many as 20 times, I taught myse1f some differ-
ential calculus, integral calculus, mathematical statistics, probability
theory and linear algébra, I attended Fred Lord's course in Item
Response Theory at the Educatiosa] Testing Service, Princeton, NJ,
and I read several publicatians on Item Response Theory.

- I‘have‘now gotten to the point where I am able to use Item
"Response Theory fer my-purposes, although there is still much that I
do not understand. ‘

S~
v

Upon reflection, I find that, as is true in many sciences, it is
not necessary to fully.understand the theoretical background and .
mathematical /development in order to apply the results of the model.

It is wideiy acknowledged in the field that one of the main
reasons that item response theory has been so slow to catch’on among
testing practitioners is the mathematical conp]exity:of the literature,
Most of the literature is written with language and notation that is
standard for the researchers. However, that language and notation
is confusing to the thdusands of testing practitioners, whoée technical.
training amounts to a couple of courses in statistics and tests and
measurement, if that much. On the other hand, many of the concepts
used in the literature are not difficult to understand, if explained
in less esoteric language and with a few e}amp1es.

~ -
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-~ Therefore, it became my resolve that no testiné practitioner, such .
as I, should have to go through what I went through in order to.
ga1n a basic understanding of item response theory The purpose of
this paper is to fulfill that reso]ve o .

Since very little of this paper is origina1 with me, by

rights there should be 'a reference for nearly every Sentence or
paragraph. Such complete references, however, will not be included
because they would be out of p1ace for a primer; and usua]]y not of
interest to the novice. wy pr1mary references are tord & Hovick (1968)
and Lord (in preparatton). Some referegges will be included to direct
the reader to more thorough and detai]ed&exp1anatiohs. Other refer-
ences will be included where adthoritativeﬂsupport is deemed desirable.

A primer is necessariﬂy:incomp1ete It is also inaccurate when
it contains overs1mp11f1cat1ons which apply to the genera] case, but
~do not app]y to extreme, unusua], or un1nterest1ng cases. This paper

" will be guilty “of such generalities and rules of thumb.

Other excellent, less elementary introductory material is also
available. (See Baker, 1977; Hambleton & Cook, 19777 Sympson, 1977).
e B . R R

I am indebted to ENS Defa Cook, £NS Pamela.Crandall, ENS Charles
Pastine, and LTJG Larry Young for their assistance in the analysis of.
data. ;

[ 4

My apprec1at1og for the many suggest1ons and correct1ons made by
the several readers and rev1ewers ‘is gratefully acknowledged. They
are: John A. Burt, Joseph Cowan, Myron A. Fischl, Steven Gorman, Karen
Jones, Frederick M. Lord, James R:‘McBride, W. Alan Nicewander,

Malcoim J. Ree, and James B. Sympson. '

I would also Tike to thank YN2 Ron Smith for his excellent art
work, and Jim Walls fyr his systems analysis and computer pro-
gramming.

" THOMAS A. WARM

. January 22, 1978
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CHAPTER 1
INTRODUCTION

1.1 Item Response Theory (IRT) is ‘the most significant development
in psychometrics in many years. It is, perhaps, to psychometrics
what Einstein's're1ativity theory is to physics. I do riot doubt that
during the next decade it will sweep the field of psychometrics. It
has been said that IRT allows one to answer any question about an
item (test question), a test;’or an examinee, that one is entitled to
ask. Although this statement is somewhat circular, it will give you
an idea of the terrific power of IRT and of the mathematical estima-
tion methods involved. |

The most common application of IRT is with multiple-choice
questions in an ability test. That use will be the thrust of this
paper, although IRT also applies as well to free response (fill in)
items. -I make no distinction between abilitv .t knowledge testing.
IRT épp]ies to tests for both. Thus, the w7 "ulv*ity" will be used
for both types of tests. No application 7 :: «arsonality or
interest testing will be discussed.

1.2 If we give several tests in the same subject matter area to a
grcup of examinees, we find that in general the same examinees score

“high on the tests and the same examinees score low. In other words,

we find consistency in the performance- of examinees on the different
tests. ‘

To-explain this consistency we assume that there is something

inside the examinees that causes them to score consistently. We call

that something a mental..trait.



“In the vernacular the word "trait" implies an innate, inherited
characteristic. We don't necessari1y’mean that. We mean only that
characteristic of the examinee that causes consistent performance on
the tests, whatever, .if anything, it is.

'No one has found a physical referent for a mental trait, and few
really expect to. It 1s sometimes tempt1ng to think of a trait as
having a physical referent like a brain engram, but that is:always
unnecessary. In this sense, a trait is an intervening variable, as
- opposed to a hypothetieai construgt Since the mental trait has no
known physical referent, it is never observed directly. Therefore,
it is called a "fatent" trait.. A '

1.3 The scale of the latent trait is traditionally given the name of
the Greek Tetter theta (8). I will use the terms theta, ability level,
amount of trait, and amount of subjeet-ﬁmtter-know1edge, interchangeably.
Thgiagis a continuum from minus infinity (-00) to p1us infinity (+pe).

It 'has, no -natural zero point or unit. Therefore, the zero“point and
unitJaZe often taken as the mean and standard dev1at1on, respect1ve1y,
of some reference sample of examinees. Thus, values of @ usually. vary
from -3 to +3,,but-may’be observed outside that range. The 8s of a
sample need not be distributed norma11y. )

1.4 When an examinee walks into a testing room, he brings with him his -
theta.* The purpose of the test, then, is to measure the relative
position o/ the examinees on the theta seaIe. The test interprets the' |
examinee's theta and produces a measurement of ability, which is!pften '
the raw (number'right):score; :The test is the measuring instrument.
Often measurement of an- ability with a test is made ana]ogoue to
measurement ‘of he1ght with a tape rule. ere is.an important
d1fference Height, whether measured byfran English ru1e or metric rule,
is- always on an equa] interval scale. /Histograms of a group of people

will always Took the samey except f

‘/some linear stretching of a
‘scale. : _ f B

12



That is not the case with testing. The histograms. of raw scores
of the same people on twl tests will seldom Took the same, even with
linear stretching of a gcale. That is because each test has its own
- pecuiiar scale (also called metric). The peculiarity of a test's
- metric distorts the distribution of examinees. Until IRT there has
been no way to identify the peculiar scale of a test. |

13



- CHAPTER 2

' Classical Test Theory vs. Item Reéponse Theory

2.1‘-C1assica1 test theory has been developed over a period of many
years. Gulliksen (1950) is an excellent presentation of classical test

theqry. -

Ro§t testing practitioners use classical test theory, whether they
know it or not. The basic tools of most testing practitioners are:

a. p-value = proportion of eXaminees se]eéting.én jtem alter-
native (also called "item difficulty"), ‘

b.. d'va1de* point biserial correlation between the item ai?
ternative and the test (some use the biserial corre]at1on)(a1so ca]]ed
Mitem discrimination"), :

c. mean of .examinees' (number right) scores, - ' : /

~ Tl d. standard deviation of examinees' scores, '

: "] . , £
. s ‘o é‘ ) )
- e. skewness and kurtosis of examinees"scores, ~d

: of, re11ab111ty of the test, usua]]y KR- 20, the Kuder-Richardson.
* Formula 20 (a-special’ case of Cronbach's coefficient alpha).

Anyone whose test analysis.is pr1nc1pa11y based on the stat1st1cs
listed above is using classical test theory. The problem with those

stat1st1cs s that they are re]at1ve to the character1st1cs of the test

>

and-of the examinees.

1R



The p-value is relative to the ability level of the examinees.
" The same item given to a high ability group and Tow ab111ty*group will

get two different’ p- -values for the two groups. It can be shown that
p'va1ues are not true measures of relative item difficulty. It is not
.uncormon for items measuring the same ability to reverse the order-of
their p-values when‘given to groups of different average ability. For
'examp1e, item A may have a higher p-value than item B for one group of
examinees, but have a lower ‘p-value than item B for a’ d1fferent group.
This effect is not a .matter of sanp11ng error.

The d-value is re]at1ve to the homogene1ey of the ab111ty levels
of the exam1nees in the samp]e, the subject-matter homogeneity of the
items in ‘the test, and the dispersion of p-values of items:in the test.
The same item, given to a group of examinees who are s1m11ar in ability
and to another group with a wide range of ab111ty, will produce two.

-d1fferent d-values for the two groups. Similarly, an item included. 1n
a test with.other items that are homogeneous in content and p-value
' w111tget a d-value d1fferent from the d,va]ue.nt will receive in a '

heterogenebus test..

The mean, standard deviation, skewness and kurtosis will also vary
according to the characteristics -of the test and examjnees.. Tt .,

The re11ab111ty s re]at1ve to the standard dev1at1on of the test,
and to the p- va]ues and d-values of the items 1n the test, all "of which
_are dependent upon the particilar ab111t1es of the examinees and the
. character1st1cs of the test. ‘

2 P
- v LI

The following qnoteiﬁiveshanother liability of using classical '
test-theory .in culture-fair testing studies: ' .

"It can be shown that classical parameters (e.g. p-value) will
generally not be IinearIy related across subgroups of a population.

This means that the "test .-for ch]tnra1;bies using classical parameters.
can Tead vo an artifactual detection of bias." (Pine, 1977, p.40)

16
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Clearly, classical fest tneory statistics are meaningful only in
an extremely limited s1tuat1on, i.e., when the same “tem is g1ven to
the same popu]at1on as part=of strictly para]]e] tests. Such a s1tu-
ation rara]y occurs. Furthermore, the basic precepts and definitions
of ‘classical test theory are'untestab1e, i.e. they are fauto]ogies
They are simply taken as true without any way to enp1r1ca11y determine

' their re]evance to reality. Some are assumed to be true eveh when this
does not appear to’be warranted 'Thus, no one knows if the classical

test model app11es to any rea] test.

2.2 In contrast IRT makes possible item and test statistics which are
) dependent neither on the characteristics of the examinees nor on the =

other items in the test. They are invariant. With the:item stat;stfés

it becomes possTb]e to describe in precise terms the characteristics of~

the test before ‘the test is administered. Th1s capability allows one to

construct a test that is. h1gh1y efficient in accomplishing the purpose
of the test. It also provides an extreme]y powerfu] tool for special
istud1es, such 3s item cultural bias.

'Moreover;Tthe assumptions of IRT are explicit and have the po-

tential of empfrica] testing. It is poss1b1e to discover if the data
reasonably meet the assumpt1ons

V&
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CHAPTER 3
A Brief History of Item Response Theory

3.1 The origin of latent trait theory can be traced to Ferguson (1942)
and Lawley (1943); Item Response Theory is just one of several models
under latent trait theory. The Rasch model is another.

. 3.2 Other early publications using some of the same concepts are _
. Brogden (1946), Tucker (1946) Carroll (1950), and Cronbach and Warring-
“ton (1952), :

- 3.3 In. 1952, Lord published his Ph.D. dissertatipn in which he pre-
sented IRT as a model or theory‘in its own right. At that time he

~ called-it Item Characteristic Curve Theory. Thus, Lord -is- considered

. the father and founder of IRT. Shortly after publishing his disser- |
tat1on, Lord stopped work on IRT for ten years, due to a seemingly
. 1ntractab1e problem with it.*

3.4 "In 1960, RaSchﬁ(1960)fpub1ished his one-parameter sample-free
modeT. The Rasch model stirred much interest and considerable work was\
- done on it during the next decade. -Its leading proponent in the U.S.
s Benjamin wr1aht, a p;ychoana]yst at the University of Ch1cago (See

~'Wright,: 1977 for references) '

3. 5 In-1965, Lord ’1°65) conducted a massive s :idy, us1ng a sanp]e
size-of greater than 100,000. That study showed that the "prob]em",'
which had deterred his -work for so long, ‘was not rea]]y a prob]en, and
that IRT was appropr1ate for real life mu]t]ple cho1ce tests. With

that study Lord began work again on IRT.

~

. *This problem is discussed in Section']4;2
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3,6’ In 1968, Lord arid Novick published a psychometrics textbook,

~ within which were four Chapters (17-20) by Allan Birnbaum (1968), a
well- known\statistician (now deceased). Birnbaum's chapters worked out
in detail the mathematics of the two and three parameter norma] ogive

_and 1091st1c mode]s *

3.7 Soon thereafter Urry (1970) completed his Ph.D dissertation in
which he compared the one, two, and three parameter models. He con-
cluded that the three parameter model best descriped the real world for
mu]tip]e-choice tests. ' |

3.8 Since Urry's dissertation, much work has been done on all three

models (i.e., one, two, and three parameter), but the three parameter

model is now receiving most of the attention because it best describes
reality. To'wit, I shall deal with the 3-parameter model on]y.‘

- 3.9 Much of the work on the 3-parameter mode] 1s coming from 3 pri-.
nc1pa1 sources. The sources are: '

‘a. Freder1c M. Lord D1st1ngu1shed Research Sc1ent1st Educa-

‘tional Testing Service, Princeton, NJ.

N

b. Vern W. Urry, Personne] Research Psycho]oglst United States
: :C1v11 Serv1ce Conm1ss1on, Wash1ngton, D. C

c. David J Weiss, Prof of Psycho]ogy, Psychometr1c Methods
, Program, Un1vers1ty of M1nnesota M1nneapo11s, MN.

There are, of course,‘many other highTy productive researchers
pub1ishing’exce11ent studies. Failure to include them in this Tist is
‘more an indication of my limited exposure than of the significance of
their contributions.

g

" *The norma1 og1ve and 1og1st]c‘og1ve will be compared brlef1y in
Chapter4 ' ' : 19 .
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3.10 The United States Civil Service Cormission has adopted a pa-
rticular app11rat1on of IRT as official policy. The .ve U.S. armed
forces (including the U..S Coast Guard) are also investigating the
application of IRT. "

i 3.11 In 1977 Lord changed the name of his mode] from Item Character-
istic Curve Theory to Item Response Theory.

«
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CHAPTER 4
- The Normal Ogive and Logjstic Ogive

4.1 1 trust the reader will recognize the normal curve plotted in
Figure 4.1 with the pluses (++++). It has a mean =0, and standard
deviation =1. The formula for this normal curve is identified in

‘Figure 4.1 as N(0,1). S

4.2 A be]]-shéped curve like this is called a frequency function
(f.f.). It is called a frequency function even when the ordinate’
{vertical axis) is defined as frequency, proporiion, percent, or
density (Kendall and Stuart, 1977, p. 13). Therefore, we call the
normal curve, the "normal frequency function.”

4.3 Superimposed over the. normal f.f. in Figure 4.1 is a Togistic*
curve or logistic frequenqy function, plotted with dots (..... ).

This ]og1st1c f.f. also has a mean =0 and standard deviation ==1.0.

The formula for this logistic f.f. is identified in Figure 4.1 as
L(0,1.7): The 1.7 in the exponent of the formula is.chosen to allow '
the logistic f.f. to approximate the norma] f.f as c]ose]y as possible.
The actual value is 1.6679, which is rounded to 1.7. In some of the
lTiterature the 1.7 is represented by the upper case 1etter D. The
letter e is the base of natural logarithms; e = 2.718281828,

4.4 The reader will also recogn1ze the S- shaped curve in F1gure 4 4
. as the normal cumu]at1ve frequency curve. An S- shaped curve -is

- called an ogive. **  This curve g1ves the proportion of area under the
norma] curve- (F1gure 4. 1) that lies to the left of each point on the
absc1ssa (hor1zonta1 axis).

*pronounced. Tojistic
**pronaunced ojive
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A5 nogive like thiﬁ fs called a distribution function {¢.f.), It

is called a-distribution function even hen the ondinate s defined as

cumlative frequency, cumlative proportion, cumulative percent, or

umlative area (Yenal] & Stuant, 1977, p.13), Therefore, ve cal the
curve’in Figure 4.4 a "nornal distribution function," or & “norre]
ogive. The formala for this nomal d.f. is identified in F1gure iy

as/NO])

4.6 Also in Fiqure 4.4, but not discernable, is the logistic ogive

(or Togistic d.f.) for the Togistic £.f, in Figue 4.1 It is not

discerrable, because it 15 so close to the norma) ogive that on this
scale the to curves nerge together in the width of the ink Tine, A
seal] portion has been magnified to a Targer scale (10¢); so that the

difference ney be seen, The nagnified area was chosen at the place

 where the 2 ogiies are farthest apart. The readér“’can verify that at

any point on the absmssa the 2 ogives are always less than lapart .

on the ordinate, & is indicate by the nequality under the magni-

fication in Figure 4.4, The formla for this logistic d.f, is id-

atified in Figne 4 as (0,17,

0T The ogive with which ve are concerned ls the normal ogive.

Hovever, note the integral sign | / ) on the righ sice of the -
fmtwnfort [(01) ‘

The integral sign there neans that no-21gebraic function can be
found 0 describe the rormﬂ ogive. This-fact nakes the norma] ogive

‘very cunbersne o work mth mathematmaﬂy, and requires nunerical -
- methods to solve, or a table of values,

LU
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4.8 On the other hand the logistic ogive has no “ntecral sign on the
right side of its definition ( f L(0,1.7)). In fact, the expression
on the right in Figure 4.4 is the algebraic function describing the
1ogi§tic ogive. The logistic ogive is very easy to work with.*

o

4.9 For these reasons the logistic ogive is substituted as a con-
venient and very close approximation to the normal ogive.

4.10 This paper will only deal with the logistic ogive. Statements
about the Togistic ogive may be taken as close approxiratigns to the
normal ogive model. The 1ogistic f.f. is no longer of interest to us.

>

" *Some interesting ]ogistic~idenﬁities are given in Appendix A.
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- CHAPTER 5
~More About Logistic 0gives

5.1. Figure 4.4 shows just one Togistic ogive. There is actually an
~infinite family of logistic (and normal) ogives, each different in
* some way from every o;her one.

5.2 Logi;tic ogives are:stric£1y monotonic functia>ns. They are
strictly monotonic Lecause, going %rcm 1eft to right, the ogive
always gets higher and h1gher, never is corp]etely hor1zonta1, and
never goes down. '

5.3 MNotice the ogive in Figure 4.4. Between -2.0 and -0.5 on the
.hor1zonta1 axis the og1ve 1s concave upward. Between 0.5 and 2.0

is concave downward. At some p01nt between -0.5 and 0.5 this ogive

‘ nmst change from _being concave ‘upward to concave. downward That.
po1nt is called the "1nf1ect1on point." The 1nf1ect1on point is
always the point where the slope of the oaive is at its max1mum 'The
inflection point for this ogive is located on the vert1ca1 axis at
.50, and or- the hor1zonta1 ax1s at 0.0.

2
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5.4 Three-parameter logistic ogives (with which we are exclusively
concerned) may -differ from each other 1n on]y 3 ways, one for each
parameter.

5.5 One way in which logistic ogives may differ is in the horizontal
Tocation of the inflection point. Figure 5.5 shows 3 logistic og1ves
labeled E, F, and G with their 1nf1ect1on points at different places on
the abscissa. You can see that the 3 og1vea are exactly the same
except for a sideways shift of the entire curve. Shifting the inflec-
tion point sideways, shifts the ent1re ogive sideways. The horizontal '
'pos1t1on of the 1nf1ect1on po1nt is called the "b-parameter" Some
call it, as we will, the "h- value". The b- va]ues of ogives E, F; and G .
in  igure 5.5 are ;.5,0.0 and 1.0, respectively.

5.6 :To include the b- -parameter in the logistic ogive function, it is
only’ necessary to subtract the b- parameter from the hor1zonta1 axis

variable.

5.7 Figures 4.1, 4.4, and 5.5 were constructed with the horizontal
axis labeled z. This label was chosen to facilitate understanding of
the Togistic f.f and d.f., because of the reader's likely familiarity
with the traditional z-scores of measurement Since we. are concerned
With the ability scale called 8, we now and hereafter label the hor-

.. izontal axis, @. Substituting 8 for -z in the log1st1c function

and subtracting the b parameter, g1ves +he height of the logistic
ogive by the funct1on

._ \P(g)z[ue-l.?(e-.b)]‘l a -
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©5.13 The lower asymptote is called the c- parameter or the c- va]ue It
is another of the 3 parameters of IRT.

5.14 The effect of the c-va]ue is to squeeze thé ogive into a smaller
vertical range. - The reduced range is equal to 1-¢c. The effect of
the reduced vertical range is to reduce the slope of the ogive at every

point on the @ scale, other things being equal. We ihc]uderthe c- .
parameter in the logistic function by multiplying by 1 - ¢, and adding

c.

<

5 | ] o
\I/(e)= c+(|-é)[ I+e "7(e‘b)].

which is the same as

Y (©)=c+(lI-c) l:|+exp(-l.7(9-b)] )

and

(I-¢)
s e-:.:r(e-b)]

4

Y@)=c+

The c-values of ogives H, J, and K in Figure 5.11 are .30, .25,

and .15, respectively.

32
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. 5.15 The third (and last) b;rameter of IRT is (you guessed it) the

a-parameter, or a-value.

5.16 The a-parameter is related to the slope of either ogive at
the inflection point or in other words at the b-value. For the normal
ogive model (with ¢ = 0.0) ;

a= ,/E-; m= 25m

where m is the slope of the ogive at the b-value. .

'5.17 Figure 5.17 shows 3 Tlogistic ogives (L,M,&N), which are identical
except for their.a-values = .3, .8 and-2.0, respectively, with b = 0.0
.00. As you can see, the larger the a-value, the steeper the

-and ¢
ogive. Specifically,

a= ['\I‘/»-:G)-:b] -

* where ‘f""(ﬂ): the point on 8, where the height of the ogive = ¢ + .6455(1-c¢).
The -1 that Tooks like an exponent of!!’ﬁ) is not an exponent at all,
but indicates the inverse of the function. Typically, a function is
used by starting at some point on the abscissa, going vertically to the
function, and then horizontally to the ordinate. The inverse procedure
would be to start at a point on the ordinate (in this case-at c +
.8455(1-c)), go horizontally to the finction, and then drop down to the
abscissa (9).y That point on @ isW'@) . The -1 outside the brackets
is an exponent, which means to take the necipkoca]. The number .8455
is the proportion of area under 'the logistic f.f. and to the left
of z-score = 1 (see Figure 4.1). The z-score = 1 is an arbitrary
mathematically convenient point.




5.18 The a-parameter enters the Togistic .function as part of the
exponent of e.

, |-c r;
=C+
\P(Q) ot -1.7a(0-b)
1+e C

This formula is the 3-parameter logistic ogive. It will look
rather ominous to the novice However, it is not d1ff1cu1t with a
pocket calculator with an ex key and a 1/x key. It is h1gh1y instru-
ctive to go through the calculation of several pofnts of a typical
Togistic ogive and to plot them. An opportunity to do so is provided
‘below for an 0give with a =.9, b = -'4' and ¢ = .2. The reader can
verify the results in Figure 5.18, which shows this 1og1st1c ogive with
- its characteristic parts labeled.

36
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Peocket Calculat tructi ! :
ocke alculator Instructions Record your‘i’(e) here
a= .9 - 8 e dC)
b= -4 ‘(@) =c+ (l-c) 3 —
© -1.7a(8~b) '
c= .2 1+e ' 2.5 - .
_ 2 EE—
Enter Key Comment 1.5 2
) (Plck one) 1 .916
- . minus
-4 b . ‘
- - X times 3 -839
.9 a
' X times 0
-1.7 constant
= -l.7a(e-b) B +269
e ' 1 _—
' + plus -
1 ) . constant : -1.5
1/x reciprocal _2 .
x times
.8 l-c
+ plus -2.5
.2 c -3
= Y (8) ' . .
Now plot\P (8) vs. 8 below.
1.0 — S - ,
)
-4[ [
¢
¥(e)
.90
.25
15 1L
S
_ { N 1
-3 -2 -1 (o] I 2
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CHAPTER 6
The Item Response Function (IRF).

6.1 Let's consider 2 examinees (Al and Bob) with different ability
levels, i.e. different @s. Let's say Al has a higher 6 than Bob. That
means they are located at different p]acesvon the 8 scale. See Figure

6.1. o i
. ; —f'i;‘L yﬂ T T T 1. 1 T '
T-. : it
TG R
Figure 6.1. The ability scale (6) with two hypothetical
individuals (Al and Bob) located on it. Co~ S
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6.2 What are the chances that Al will get item #1 correct? Uhat are
the chances that Bob will get 1tem #1 correct? So far we don' t know
" the answer to either of those questions. But we do know one thing. Al
has a better chance of getting item #1 correct than Bob, because Al is
smarter%than Bob (in ability 8). So let's represent the probability of
each get‘1ng the item correct by a po1nt above each (points A & B) in

F1gure 6.2.

-

T

Figure 65. The probabilities of Al and Bob getting gy Al

Item 3# 1 correct as a function of their abilities. RSN ANE!

-

6.3 1In doing so we have defined an ordinate as the probability of
getting the-item correct as a function of @ (ability). This may be
‘written Ps (R]e), and read, "the Probability of getting item i correct
given (’) 8." -But for brevity it is usually written P (8). The
subscript (i) is often omitted.
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who is dumber (less ability 8) than Bob

6.4 Now-let's take Carl,
See

Carl has an even smaller chance of getting the item correct

Figure 6.4a.

1]

.-', .
Il H

Flgufe 6.4a. The probabilities of Al, Bob, and Carl
gettm%ltpm # 1 correct. .

"And let's also add Dave, and Ed and Fred who have less 08 still. See

F1gure €.4b.
e EERENSRE=EmRESES
—+b|
71 N2 f
] T |
ju iy H EAREE r i
re 6.4b. The probabilities of Al, Bob, Carl, Dave,

1
Edgu d Fred getting Item # 1 correct.

See Figure 6.4c.

And we - can aéd Olga7,“ wh6 is very br1gh.t
! }
ns T !
pEN . < F ]
T ' ‘*;{rj_f_f.'f;_ 1 5 |
3 snga, TR INE INRY 38
- ,;h..,_-"i;""i“ﬂ R -Gl fE?..’ﬂ!TiTT" T
T SRR F
' re 8.4c. The probabilihes of Al, Bob, Carl, Dave

Efu Fred, aud Olga getting Item # 1 correct.
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6.5 Since the probabi]ity of getting the item correct is only a
function of the amount of ability,* we can say that any who has

the same 8 as Al will have the-same probability as Al of getting

the item torrect (R). And, everyone who has the same @ as Ed will
have the same probability as Ed of getting the item correct (E),

and so on. Therefore, we cén\connect the points in Figure 6.4c,
which will tell us_fhe P(8) for each 8. This curve is called the Item
Response Function (IRF) éng was until recently called the Item Char-

acteristic Curve (ICC). See Figure 6.5

11

-+

¢ - i I
R NZ T T *" o T -
N T
s T _,
- T 1T

Figure 6.5. The Item Response Function of Item
# 1 '

(=)

6.6 We know several things about thi§ IRF.

(1) It cannot rise higher than 1.0, because a. probability = 1.0
is a sure thing, and nothing can be more probab]e than‘a sure thing.

(2) It will never reach a height of 1.0, because in testing there

" is no such thing as a sure thing. Therefore, the curve has an upper
‘asymptote of 1.00. ‘

(3) Between Ed and Bob the curve has to rise rapidly, because it
must rise from point E to point B in the short distance between Ed's

O and Bob's 8.

*assuming unidimehsionality, which will be discussed in Séttion 14.4.

%



(4) " The curve must always rise (i.e. can never be horizontal or -
go down) as we move from left to right, because as ability increases,
so does the probability of getting the item correct. Therefore, the
curve is strictly monotonic. o

(5) It cannot go below 0.00, because a probability = 0.00 is an
absolute impossibility, and nothing can be less probable than an"
abso]ute*impbssibi]ity. Therefore, the curve has a lower asymptote.

(6) Since the item is a multiple-choice question: there is
usué]]y a fair probability of getting the item correct strictly by
chance alone, no matter how low the 8. .Traditionally, we have taken
this probability to-be 1/A, where A = the number of alternatives in the -
multiple-choice question. A 4-choice item has been thouohf to have a
chance probab111ty of 1/4 = .25, and a 5-choice item, a chanze pro-
bability of 1/5 = .20. Whatever the:chance probability of getting
. a multiple-choice item'correct is, it is not expected to be zero.

It is expected to be somewhat greater than zero. Therefore, the curve
“in FigUre‘G.S is expected to have a Tower asymptote above zero. (In
Section 7.3 we shall see that the lower asymptote is seldom 1/A)

6 7 You have probab]y noticed that all of the things we observed about
the IRF are a]so true about the 3-parameter normal ogive and Tlogistic
og1ve

‘Therefore, we conclude that the'normal (or logistic) ogive may be

used to describe the IRF very well. And we may use the logistic ogive
function to describe the IRF mathematically.
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6.8 If éomehow we knew and we were to plot the probabilities of
getting item #2 correct «for A1, Bob, Carl, Dave, Ed, Fred, and Olga, we

might get an IRF Tike Figure 6.8.

Ll 1l L 1 ) -* } ¥ —.
f EEEEENEN 1
| Il I pal

RENEY
L

- Figure 6.8. The Item Response Function of ‘Item :°
# 2. ’ -
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6.9 Figure 6.9 shows both jtem #1 and item #2 .

1.00

P(e)

— .m_/\, /\/4.00 —
TENs 162 riko J;o!gt J;RL :BD'B:[ o:tA

' Figure 6.9. The IRFs of Items # 1 and # 2. '
For 0lga, Ed and Fred (and anyone else with their 0s) the probabiiity
(P2(8)) of getting item 2 correct is about the same as their R() for

item #1.

But item #2 is harder for Al, Bob, Carl, and Dave-thankitem #1,
because for all of them the probability of getting item #2 correct
(R(8)) is Tower than the probability ¢ gettinc item #1 correct. - And
it would be harder for anyone who has the same ab111ty as Al, Bob, ’
Carl, or Dave.

6.10 We also notice that the probabilities of getting item #2 correct
for Bob, Carl, Dave, Ed and Fred are all about the same. Item #2,
then, does not do a good job in distinguishing among people with
abilities 1ike Bob's or below. This observation is consistent with
what we intuitively understand about items.. A hard item does not
discriminate among Tow abi]it} people, because they-a11?get it wrong
(un]éss they make a Tucky guess). An easy item does not distinguish
‘among high ability people, because they all get it correct. A test
composed of items with IRFs Tike item #2's IRF would not be a good test
for measuring the relative ability of people 1ike Bob, Carl, Dave, Ed
and Fred. ' ‘

Note: In practice, any particular examinee may either know the answer
to a particular item (in which case his probability of getting it
correct is 1.00), or not know it (in which case his probab111ty of
getting it correct is chance). Str1ct1y speaking, we can not talk about
the probability. of a particular person getting correct a particular

_item. However, for pedagogical reasons we will v101ate this restr1ct1on
in. th1s section, (See Section 8.2 fér clarification. )

) i
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6.11 However, 0Olga's &g‘) for item #2 is much higher than Al's

I;(Q). Therefore, item #2 will distinguish between neople like Al and
Olga. If a distinction in that range of ab1hty is our purpose, then
a test made of items 1ike #2 would be a pretty good test.

. 6.12 Item #3 might have an IRF 1ike that in Figure 6.12. This item
rises over a longer range than does either item #1 or item #2, but its
. slope is less at every point during its rise. This Tow slope means
that item #3 is discr"iminating over a wide range of 8, but is not
- doing so well at any particular .

o | / |

-00

’e{\/-}.OG‘

.FRED 'J’ DAVE CARL xone AL OLGA
Figure 6.12. The IRF of Item # .3.

6.13 Figure 6.13 shows the IRFs for both item #1 and item #3.

100
Pie) ITEM .
\
: : : \1?}" ,
. - - +.00
i gme— F T ¥ v . §F 1

‘ FRED €D DAVE CARL DOB AL . OLGA
Figure 6.13. The IRF of Items # 1and #. 3.
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It is, 1nterest1ng to note that item #3 is harder than item #1 for
Al and Bob, but easier for Dave, Ed, and Fred. This poss1b111ty of
reversed relative item difficulty for persons of different ability is
one of the surprising results of IRT. | '

6.14 . We have seen that the greater the slope of the IRF, the greater
the discrimination, but the smaller the range of discrimination. We
have already noted in Chapter 5 that the a- parameter of the logistic
ogive describes its slope. Therefore, the a-value is called the
discrimination index of the IRF. The greater the a-value of the IRF,
the better the item discriminates. '

6.15 Also apparent is the fact that the shift of the IRF as a whole
to. the left makes the item easier in general, and to the right makes
the item harder in genenal. The left-right shift of the logistic ogive
is described by -the b-parameten. Thus, the b-value is the difficulty
index of the IRF. The more.difficult the item is, the larger (in the
positive direction) the b-value of the IRF.

6.16 The IRFs of items 1, 2, and 3 have different lower asymptotes.

-, Since the IRF never goes below the Tower asymptote, this difference in.

IRFs means that the items are of different difficulty even for exain-
inees of very low ability. But examinees-of very low ability will
know almost nothing about the item, and therefore have to guess. The
difference in lower asymptotes of IRF's means that véry-IOW'ability
examinees have a better chance of guessing the correct choice of some
items thaw of others. This result of IRT will be d1scussed further in
Section 7.3. The lower asymptote of the logistic ogive is the c-
parameter. The c-value of an IRF is called the "guessing index" or
more proper]y the’ “pseudo -guessing index" of the item. Both terms are
used. o '
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Figure 6.17. The IRFs of four actual items from the
Coast Guard Knowledge section of the. U. S. Coast
Guard Warrant Officer Test series 8,
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6.17 Figure 6.{%_ShOWS the IRF's for 4 actual items from the Coast
Guard Know]edge §%ction of the U.S. Coast Guard Warrant Officer test.

‘Item #17 is a very difficult, but highly discriminating item. It has a
c-value of .00, which means that nearly all examinees below 8 = 1,

answered the item incorrectly. Item #17 is a very unusual item in two
respects, its extremely high a-value, and .00 c-value. It is, however,

an ideal item for many purposes.

Item #21 is an easy item with somewhat low discrimination. Item
#47 is slightly easier than #21, but has good discrimination. Item #50
is an item with medium difficulty, and poor discrimination.

6.18 The IRF should not be confused with the item~test curve. The
item-test curve has raw score as the horizontal axis instead of 8.

The item-test curve, therefore, suffers from the same problems of
distorted scale as thz raw score. The item~test curve has no par- -
ticular shape; and is not independent of the other iteins in the test.
In fact, the average of the item-test curves of all items in a test is
'a]ways'a straight line'of slope = 1(i.e. 45°). Thus, for many purposes
the item-test curve is useless as an analytic tool.
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CHAPTER 7
The a, b, & c parameters

[N

7.1 The a-value is the discrimination index of the item. If @ is
normally distributed, in the normal ogive model the a-value is related

to the d-value in the following very complex way {from Schmidt, 1977).

da/Pq

a~ :

4 (KR-ZO)(I‘C)Z)IZ,‘-deq

where d = d-value, the point biserial item-test correlation
p = p-value, the'propqrtion.of examinees correctly answering the 1tem
q = 1-p
KR-20 % Kuder-Richardson fermula 20 re]%abi]ity

y = the height of the N(0,1) curve at the z score that cuts off
P' proportion of the area under the N (0,1) frequency function.

Cc = c-value
p' = E
l1-c¢




' The a-value is related to the s]ope‘of the IRF, and can range from
0.0 to + 00 just as the slope can. Negative slopes are possible, but
not of interest to us. Experience has shown that a-values of typical-
items vary from about .5 to 2.5 with most from 1.0 to 2.0. The highest
I have observed is 3.76. An item with a low a-value discriminates
poorly over a wide range of 8. With a high a-value the item discri-

minates well, but over a small rangelof 8. Items with a-values below
.80 are not very good items for most purposes. '

7.2 The b-value is the difficulty index. If @ is normally distributed,
it is related to the p-value in the normal cgive model (rrom Schmidt,

1977) in the following way:

"yz(!-c)a/KR-20

4~/pa

b=

where z = the z-score that cuts off p' proportion in the upper portioﬁ

of the area under the N(0,1) frequency function, and the other symbols
are as defined in Section 7.1 above. Typical b-values range from -2.5

to +2.5. A b-value of -2.5 indicates the item is very easy. An item.
with a +2.5 b-value is very difficult, and items with 0.0 b-values are-
of medium difficulty. "
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7.3 The c-value:is thé gueséiné-parameter\or pseudo-guessing para-
meter. It indicates the probability of examinees with very low o
ability of getting the item correct. Most c-values range from .00 to
.40. Itéms with c-values of .30 or, greater are not very good items.
It is desirable to have the c-value at .20 or less. The lower the

iﬂiﬂtter A zero c-value is ideal. Typically, the
c-value is about 1/A - .05, where A = the # of alternatives. Thus,
4-choice items often have c :t:.ZO'(i,e. .25-.05), and 5-choice items
often have c 2215 (i.e. .20-.05).

,Cc- va]ue is, th

Items do not have a c-value of 1/A because examinees do not, in
fact, guess randomly when they do not know the answer (as has often

been assumed in classical test theory analyses).

7.4 Two explanations have been offered for the fact of non-random

guessing (C#I/A) .

Lord has suggested that item writers are very clever in writing
distractors that are very attréc;ive to low ability examinees. Thus,
when Tow 6 examinées do not know the answer they are attracted more to
distractors than to the correct answer, and so get the 1tem wrong more
often than if they guessed random]y

s

The other explanation is my own, based upon persona] know]edge of

item writing and test taking behavior: '

(1)' When an item writer sits down t6 write items, he; for the
moment, is»nat'cqncerned with the distribution of the correct answers
(the keyed choices) among the four (for four-choice items) possible
positioﬁs‘(i.e. choice A, choice B; choice C, and choice D).

.
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(2) He has a- tendency to try to hide the correct choice. " In a
four-choice item there are only ¢ places to hide it - choice B, or
“choice C. Therefore, he writes many more items, keyed B or C than A
or D, and in fact there seems to be a much Stronger teMdeHey towdrd C.
(I have verified this tendency with many item writers). This also
seems to be true for 5-choice items.

(3) When he finishes writing the items, he tabulates the numbers
of 1tems keyed for each position, and usually finds that he ‘has many
more C's than A' s, B' 5, or D's (or E's in 5-choice items). B}

(4) Most testing organizations have a requirement that there-
should be about equal numbers of items with the keyed ChOici in each
of the 4 or 5 possible positions.

(5) The item writer then,begins to revise the order of the
choices in items to decrease the number of items keyed C, and increase
~ the numbér of items keyed A end D and maybe B. He continues to revise

the order of the choices of items until he has satisfied the require-
" ment of abzut equal numbers of keyed choices in each position.

(6) Naturally, to.save himself work and time (the Law of Least
Effqrt) he wants to revise as few items as possible. Therefore, he
stops revising items when he gets within the requirement of about
equa’ 7umbers. Because he started with more items keyed C, he also
ends up with more items keyed ¢ (but not as many), because he on]y
needs- about equal numbers

If the above scenario is as universal as I believe, it means
that, in the set of all multiple-choice items in the world, more are

keyed C than any other choice. It is true of almost all of the tests I
have checked. ' '
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‘There is a widespread rule of thumb ‘among examinees: "If you
“don't know at all, guess C." I have heard this rule of thumb from
coast to coast, from high school and college students, and from
civilian employees and mi]{tany personnel taking promotional tests.
I db not know the source of this rule of thumb; but it is possible
that the rule of thumb gradually<grew from examinee;' observations
of 'The frequency of keyed choice positions, as I have suggested
gbove. '

Whatever the origin of the rule of thumb, it represents rational
behavior, given a higher freduenqy of choices, keyed C, among the
population of a]1 multiple-choice items. By:choosing choice C (when
you don't know at é]]), you will get more items correct b{ chance in
the long run than by guessing at random.

This ana]yéis suggests that the c-values of items keyed C will
be higher than for items keyed A, B, and D. I was able to test this
hypothesis with 127 items from 6 forms of the verbal parté of the
SCAT-II series of tests, published by the Educational Testing Ser-
vices, Princeton, NJ. The c-values were provided by Fred Lord.

A two-by-two frequency table of A, B, D vs C by aBovéLaverage c-value
VS be]ow—averagezc-va1ue'yieIded a Chi square significant Beyond the
.001 Tevel. This result strongly supports the hypothesis that low
abi]ity'examinees get items keyed C correct more often than they get
items keyed A, B, or D correct. ‘

il

The results suggest’2 alternative courses of action for testing’
organizations.

(1) Require that there be exactly the same number of keys
in each position. This action would thwart the test-wiseness
of those who use the rule of thumb. However, it.represents'an

undesirable rigidity.




(2) A better cdy§se of action would be to key C for less than
1/4 of the i;emS’(fok 4-choice items). This action would cause
a lower average c-vé1ue for the test. The lower average c-value
would increase the total information in the test, which as we
will see in Sec. 9.4 is highly desirable.

7.5 The Rasch mode] assumes that all items in a test.have the same
a-value, and that ¢ = .00 for all items. Both assumptions are nearly

always unrealistic.
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CHAPTER 8 .
N The Test Characteristic Curve o

4

|

A

8.1 The scale of 8 is continuous, but since most of the c’\cu]at1ons >
are done on d1g1ta] computers, 6 is usually broken into small, dis-
crete intervals of .05 8 units, and values of P(8) are calculated for
each .05 interval from 9.= -5.0 to 8 = +5.0. ° The very broad range

from -5.0 to 5.0, and the small .05 intervals are used in the interest
of accuracy. Larger or smaller inf:;}a%s and a broader or narrower
range may be used'depending on the purpose and degree of accuracy

. - ./
desired. -/f' (ji}

e
1
1

8 2 Table 8.2 bgiow 91Y92 the P(8) for 17 values of @ for each of the
4 items, shown in Frguré‘G 17. '
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o ., . L _ : P{gl

L#17 #2147 #50  Ep(e)

p:i‘qus’ e
~ ’

.00 .30 .38 .20 .88

-2.3 .00 .33 .40 .23 .9
.. -2.0 .00 .37 .45 .25 1.07
7 -17 .00 .43 .52 .28 " 1.23
-1.3 0 L00* .53 .66  .33. 1.52
-1.0 .00 .71 .87 . .44 -~ 2.02.
-.7 .00 62 W77 . 48 1,77
-3 .00 .82 . .94 .52 2.28
o .00 .88 .97 .59  2.44 =,
3 .00 .92 .99 65 2.56
7 .00 , .96 .99 .74  2.69
1.0 .01 .97 .99 .79  2.7%
1.3 .04 .98 .99 .84  2.85
1.7 © .35 .99 .99 .85  3.22
20 .78 .99 .99 .91  3.67
2.3 .9 ° .99 .99 .94  3.88
2.7 .99 .99° .99 .96 3.93

Table 8.2

An item is scored dicﬁotomous]y,'which means the examinee ejther
gets the item correct (for which he det$ an Gbserved score of 1) or

he gets the item wrong (for which he gets an observed score of 0).}’
The dichotomous score is a result of the typical dse of multiple-
‘choice items. An examinee's dichotomous score (0 or 1) is not a
very accurate measure of his knowledge.- '

]

<*
G
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P(@) may be interpreted in two ways. A P(8) = .78 means both:

(1) 78% of the examinees with the given @ w111 get the
' item correct, and

(2) An examinee will get correct 78% of tre jtems f*&g
which his P(9) =.78.

.

) If an examinee answers 100 questions for all of which his P(8)
= .78, he is expected to get 78 items correct and 22 items wrong for a
% score of 78%. If there were some way to give him partial credit of
-78 points for each of the 100 items instead of 0 or 1 point he would
also get a % score of 78%. This notion of partial credit for an item
depending on his P(8}, leads to the idea of a true score on the item.
It is often not true that the examinee is 100% or 0% certain of
his answer. Yet on a multiple-choice item he either gets full (100%)
credit for the item (1, if he gets it cokrect) or no (0%) credit
(0, if he gets it wrong). The examinee's degree of certginty, if
measurable could be taken as a more precise measure of his knowledge.
P(8) might be interpreted as this measure of his knowledge, and is
called his true score on the item. The sum of his true item scores
Ts his true test score. His trué test score is the raw score he

wolld get, if there were no measurement error in the test.

* The far right cdfamn in Table 3.2 is the sum of the P(8)'s of the
4 items for each of the listed po1nts on the @ scale. TheX P(0) is
the true test score of an examinee w1th a given 8 on a test composed
of the 4 items.

~&
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| TEST CHARACTERISTIC CURVE
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Figure 8.3. The Test Characteristic Curve of a test -
composed of four real items, .
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8.3 If we plot the true test scores against 9, we get a t%a;
characteristic curve (TCC). Figure 8.3 shows the TCC. The TCC:
gives the true score for each poiht on the 8 scale. Notice that
the TCC is neither a straight line nor an ogive. Each test will

have its own TCC, which is the sum of the IRF's of the items in
the test.

8.4 One of -the interesting uses of the TCC is to determine.the
distribution of the true scores on the test. Figure 8.4 shows how
this is done. If the examinees' @s are normally distributed, as
shown on 8 (upside down), the examinees' true score: will be as shown
on the left. The true score distribution is found by projecting the
intervals from the @ scale onto the TCC, and then representing the
same area on the true score scale within the projected intervals.
Figure 8.4 is an excellent demonstration of how the pecu1i;rities of

a test produce a distorted metric. '
8.5 It is important to note that true scores (T) are not observed
scores (X). Observed score.is defined as true score plus error
(X=T+E). However, Lord (1969) has found that the distribution
of X will be similar to the distribution of T, but sometimes with
the high points of the true score distribution f]aftened somewhat,

and the low points higher. The flattening is due to error.

-
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CHAPTER 9
The Item Information Function (IIF)

J .
9.1 We can see in Figure 6.17a that item #17 will not help us to

distinguish among examinees whose ©'s are less than 1.0 because

they will all get the item wrong. Apparantly, there is something
about item #17 that leads all examinees with 8 € 1.0 to choose

the wrong alternative. This is an unusual situation, but _
actua11y'ocgurs with this question. A test made exclusively of items
Tike #17 would do nothing to distinguish among examinees with 6 <

1.0 because they would all get zero on the test. It would give us no
distinguisﬁing information about them.

Item #17 also gives us no distinguishing information about
examinees with 8 = 2.7 or greater because they will all get it
correct. On a test composed Of<items like #17, all examinees with
8 > 2.7 would get 100%. '

Between 6=1.0 and 8=2.7, it is a different story. From 6=1.0
to 6=1.5, P(8) goes from P(B=1.0)=.00 to' P (8=1.5)=.08. The change
of P(6) means that the item does help to distinguish among examinees
within the range of 6 where the change of P(8) occurs. In this case
the difference between the P(8)'s (to be denoted dp) = .08 (.08-.00)
is small. The change (dp) -occurs over 'a range (i8) of 1/2 © units
(1.5-1.0). The ratio of dp to d6 {dp/d8) is equal to the average .
'slope of the IRF over the range of d6. For the range from 6=1.0 to
6=1.5, dp/d0 = .08/.5 = .16. |

-
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2.0 for item #17, P(9) changes from .08 to.
.78, a ver. 1arge change. dp = .70 {.78-.08) in this range, and
dp/de = .70N§ = 1.40, which is very largé. Item #17 is an excellent
item for distinguishing among examinees in the range © = 1.5 to @ =
2.0. A test composed of items like #17 would give scores from about
8% to 78% for examinees whose ©'s go from 1.5 to 2.0. This test
would give s a lot of distinguishing information about‘examinees in
this range of 9 because it would spread them out over a w1oe range

- of test Stores.

We can see that the greater the slope of the IRF, the more in-
formation the item gives us about examinees in the range being
considered.

9.2 If we could make the range of © over which we find the slope
smaller and smaller, we would eventually get to the slope of the IRF
at a point which wou]d be the s]ope of the tancent Tine to the IRF at
a particular point of 0. :

The slope of the IRF would be a measure of the relative amount:
of information the item gives about examinees at that point. . The
greater the slope, the more information.



Fortunately, there is an easy way to find the slope of the
logistic ogive. The slope of the IRF is given by:

4P 17a(1-ge O

P e [1+el7a(0-b)2

where a, b, and c are the item parameters and 8 is the point

where dp/d8is the slope. The slope is also sometimes denoted as
P'(8), or P' for short. 1In calculus P'(8) is known as the first
derivative of P(8). Since the slope (P') is a measure of information,
it is possible tn plot a curve that shows the amount of information
an iter: gives at each point on the 8 scale.

9.3 However, there is a catch. For mathematical and statistical
reasons which we will not go into, P'(8) is not a completely
aprropriate measure of information, but a related function is.
The function is:

2 2
Ieu P __ ___ (1.7a)" (1-¢) >
Re)ae) . I7a (9-—b§”: lve -I,?a(e-b)]

AN
. PO | ) o
where P* 'is P' squared, and Q(8) = 1 - P(8). Note that the
exponent of the Teft e in the denominator is pesitive, and the
* exponent of the right e is negative.
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That function is called the Item Information Function (IIF), and
i$ written 1(8,u). The above formula for 1(8,u) may look even more
. ominous than the formula for P(8), but in fact it is only slightly
more complicated. It is still feasible to calculate points of
1(8,u) with a typical scientific hand ca!c@]ator.

i

9.4 Figure 9.4a shows the I1(8,u) for the four items whose IRF's are
shown in Figure 6.17. (Note that the vertical scale for" item #17 is
different from the others.) In comparing the IRFs with the IIFs,
you will note three important relatipnships.

(1) The IIF is highest close to where the slope of.the IRF is
steepest. 3

(2) The total area under the LIF increases as the a-value
increases. 7 '

(3) The total area under the IIF decreases as the c-value
increases. :

The fact that total information (i.e. total area under the IIF)
increases as the a-value increases, demonstrates the importance of
high azvalues for items. However, there is another effect of high
a-values. As the a-value increases, the width of the @ scale over.
which the information is distributed decreases. The effect is called
the bandwidth paradox*. Thus, sometimes a compromise must be made
between the total information provided by the item and the distri-
bution of information over 6.

*This bandwidth paradox is different from the bandwidth paradox
described by Cronbach (1560, p.602).
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Figure 9.4b. The relationship of the c-vilue to-the -
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The total information‘(Ag) of item g is given by

Ag’=

L7 (c-logc+(l-c)) _ |70+—7°—cm—"l70 * )
I-c :

wh§re a and ¢ are the -item parameters and log c is the natural log-
arithm of c. From inspection of the formula for Ag, you can see that
as the a-value increases, so does Ag. Also apparent is the fact that,
as ¢ apprbaches zero, Ag approaches 1.7a. Therefore, the maximum
total 1nf0rmat10n an item can provide is 1.7a. Not so obvious from
the formula for Ag is the relation that, as c approaches 1.00, Aq
" approaches zero. This occurs because 109 ¢ is negative except when c
= 1, and because when ¢ = 1, c log c/(l c) = -1. This relation
explains the effect of the c-value: the c-value destroys information.
‘Figure 2.4b shows how total information decreases-as c increases while
holding the a-value constant.
Since the b-value is not included in formula. for Ag, the b-value
does not affect the tota] 1nformat1on

9.5—-The point on @ where the IIF is highest is not at the b-value,

- as ong»might expect (except-when c¢=0). The point on @ where informa-
tion is greatest is given by

e

maxI(e’u) , Ta [Iog(5+ 54/I+8c]

where "ldg" méans the natural ]ogarithm;
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The peint on @ where 1nformat1on is rax1r1zed is a]ways to the
rlvht of the b- va1ue, (except when c=@, it is at the Tue), but
never fartt?rto,the richt than .41/a. -

9.6 The IIF is symmetrical when c=0 and skewed to the right when
c#0. The larcer is c, the greater the r1nht-skew The r1ght—>Lew
occurs because the c- -value destroys rore information at low 1eve1s

of 8 than at high levels. This result .makes sense because EXaF1nGGS
at low és will guess more than .examinees at hich 8s. Guessing (1.e.
the,opportyn1ty to get the item correct by gue;s1ng) destyoys infor-
mation. ‘It is for this reason that five-choice iters arerpreferred to

four-choice itens.
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‘ CHAPTER 10
‘The Test Information Curve and Relative Efficiency Curve.

10.1 The Test Information Curve (TIC) is nothing more than the sum of
the IIFs.- IIFs are summed by “stacking_them on top of each other."
"Stacking" IIFs merely means that the heights (i.e. the amount of
ihformation) of the IIFs at a particular value of 8 are added together
to \get the.height of the TIC at that value of . Plotting the sum of
item information at each value -of @ gives the TIC. The height of the
TIC at @ is written as 1(6).

I@=5I(6u)

y
(N
S ~

10.2 * Figure 10.2a shows the sum of the IIFs for items #17 and 21 as
shown.in Figure 9.4a. Figure 10.2b shows the IfF of item #47 added to
Figure 10.2a. Figure 10.2c shows the IIF of item #50 added to the
other 3 items. A test composed of these four items would have the
wierd TIC in.Eigure 10.2c.

10.3 The TIC %hows'the relative amounts of_information provided by
the test at each point on 6. Where you want information depends on
what you will use the test for. If you want to select a few EXamihees
from a large number, then you want a Jot of information at'higﬂ;levels
of 8, so that you can tell just which examinees are'tﬁeibest. For
example, see Figure 10.3a. If you want to select all examinees'éxcept
a few, then ybu want a lot of information at Tow s so you can tell
which examinees are the worst (e.g. see Figure 10.3b).

M
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Fi 10.3a, Test Information Curve of a hypo-
thetigal test, which would be efficient for a high

‘1(e)
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Figure 10,3b. Test Information Curve of a hypo-
thetical test, which would be efficient for a low
. cut score (& = -2,3),

Q > R | 73. 4




 Ie)

e

" Figures 10.3¢ The Test Information Curve of a hypo-
. o thetical test, which would be efficient at both high
v and low cut-scores. '

. 34 - \

-3 -2 - 0 ¢ ! 2 3

Figure 10.4. The Relative Efficiency Curve compar-

ing Test Information Curve in Figure 10.3c to that in
Figure 10.3b. :
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Somet1mes a test is des1ngd for more than one purpose, such as
to be used with two cut scores. for entrance into two different
schools. In this case a two- humped,TIC will give good information at
the two cut scores. (e.g. see Figure.10.3c).} s

. A TIC of any desired shape may be constructed, provided the
items with the necessary IIFs are available to construct the TIC.

10.4 Usually we already have'a test and want to revise it to make it
better serve our purpose. A comparision of the new and old versions
should be made Using the. Relative EfficiencyCurve (REC). The REC is

" nothing-more than the ratio of the TICs. The ratio of the two curves .
is found by dividing the I(8) of one test by the”I(Q) of the. othek
test at each po?ﬁt on 6. F1gure 10.4 is the REC, conpar1ng the TIC

. in Figure 10.3c ‘to the TIC in Figure 10:3. \¥_§5

Where the REC is above 1.0, the fest in Figure 16.3c(the'test
for which the I(8) is the numerator of the REC ratio).is better than
the test for Figure 10.3b. Where the REC Ys below 1.0, tFeé test for
Figurc 10.3b is better. And where the REC X 1.0, the two tests are
the same. ' -

By starting with an old test, making substitutions of items, and
calculating the REC,.you can experiment with and 1mprove the o1d test
by trial and.error. It does not take long to deve]op some skill in
replacing items to improve the TIC as desired. ‘

10:5 Every test has some error in it. The Standard Error of Estimate
(S.E.E.) is the expected standard deviation of errors of estimated

" .ability. That is, if we were te ‘give a test to a group of examinees
with identical 8s, and estimete their 8s wf%h the test, the standard
deviation of .those estimates would be the S.E.E. |
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10. 6 If the estimate of @ is a maximum 1ikelihood estimate (see Chapter 12),
the S.E.E. at a particular @ is easy to calculate from the TIC. The S.E.E
1s equal to the square root of the reciprocal of the height of the TIC (I (8)).

/

e

Since 1(8) varies along the @ sca]e,'SO'wi]] the S.E.E. The e

larger I(8) is, the sraller the S.E.E. A small S.E.E. at a cut poihﬁM
grh1gh1y desirable. : ) PN
‘ }

'10 7 The average S.E.E ]S E.E.) over examinees is related to the /
reliability of C]assica] Test Theory ( ), when the scores are
standardized to a standard dev1at1on = 1 0 "

This relation implies that a test w1th high re]1ab1]1ty ray Le a
poor test for your purposes. because it has Tow information at ‘the
critical values of @. S1r1]ar]y, a test with Tow reliability ray be an
excellent test for some purposes; if it has high information where it
is needed. Thus, re]1ab1]1ty is highly misleading as to the va]ue of a

test.

The relation also makes clear the dependence of reliability on the
d1<tr1but1on of ability. If many examinees are on the 8 scale where
there is h]gh information, then the reliability wili be. hicher than if

they are distributed on @ at points where information is Tow.

3
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CHAPTER.11
The Score Information Curve

’

11.1 The test, information curve (1(8)) 'gives the maximum amount of
informatioq about @ that can be extracted frum the test. However, to
get the maximum information, items must be optimally weighed. The
optimal weight (W(8)) of an ‘item is given by

P 1.7ce- 72 (6-D)

wie) =g - . 70(6-b)
“ct+e

S l" v
‘There is a cur1ous character1st1c of W(B). It varies with

' That means that 1tem A should rece1ve different weights for examinees

different Bs. But _to get W(B), you must know 8, which is what
re trying-to get by giving the test.

There are two ways to approach this di]emmé.

The most satisfactory way is to use an iterative computér

'pkcgram, such as LOGIST or OGIVIA (see Chap. '15) These computer
programs, in effect, make use of the optimal 1tem weighis and
hence yield. max1mum 1nfnrmat1on about 8. :

(2) A rough approximation would be to take raw scores on the
test, divide the distribution of raw scores inte, say, top,
midd]e:and bottom groups and then .rescore using different
item weights for’ each group. This procedure would not yield
maximum information, but would provide more informaticn than
not using variable item weights at all.

]
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11.3 If neither of the options in Section 11.2 is possible, then you

may have to resort to the use of number-right score. In this case

the amount of “nformation provided by this scoring procedure becomes

of interest. The amount of information provided by a number-right

score is called the number-right Score Information Curve (SIC). The
formula for the SIC (also written as I(8,X)) is

_LEL
16x)= =P Qi

11:14 The SIC usually has the same gener:| shape as the TIC, but is
Tower than the TIC at all values of 8. At high 8 the TIC and SIC will
be nearly the same height (i.e. SIC/TIC==1.0). As 8 becomes smaller
and smaller, SIC/TIC becomes smaller. This result means that, at high
8s Tittle information is lost by using a number-right scbre, but at low
8s relatively much informatioh'is lost. Such %s the penalty for ush of
the inefficient number~right-scorq; | \a\\

1.5 Thetng; of two tests may be used just as the TICs are used. A rough
approx1mat1on of ’ the standard error of estimate may be found for each 0 using
~ the number-r1ght scoring procedure, and the ratio of the SICs of two number-
right scored tests may be interpreted in the same manner as the Relative
 Efficiency Curve for TICs. (Strictly speaking, for this interpretation

to be legitimate, the test score irust be shown to be an-unbiased

estimate of 6.)

11.6 The'SIC.is plotted by a computer program available. from the Educational
Testing Service (See Chapter 15), and may be derived from a program by John
Gugel (see Section 15.4). "
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CHAPTER 12

Maximum Likelihood Estimation of @

12.1 There are two main ways in IRT to estimate an examinee's 8.
“They are called the Maximum Likelihood Estimation method and the

Bayesian Modal Egtimation method. Both methods use the actual re-
sponse pattern of the examinee rather than the raw score. The differ-

ence between the two methods is merely an additional assumption made by the
Bayesian method.

12.2 A resgonse is indicated by the lower case letter u. If the examinee
gets item i correct, then u;=1, and if he gets it wrong, then u;=0. A
response pattern is also called a response vector, and is represented by
the uppercase letter U. A response pattern is a list of zeroes and ones,
indicating which questions the examinee got correct or wrong in the .order
the items appear in the test. For example; in a four-item test, an exam-
inee who got the first two items correct and the last two wrong would have
a response pattern U = 1100. If he got the first and third items correct
and the other,two”items wrong, his response pattern would be U = 1010. If
he got the first three wrong and the last item correct, he would have a

response pattern U = 0001.

12.3 We recall that P;(8) is the probability that an examinee with
ability 8 will get item i correct. G;(8) is the probability that an
examinee with ability @ Qﬁ!] get item i wrong. Qi(g)=1'Pi(g)' We will
abbreviate P.(8) and Q;(8) by P; and Q.

"
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'12.4 Probability theory tells us that the probability of independent
events occurring tocether is equal to the product of their separate
probabilities. We know that the probébility of cetting one item
correct or wrong is independent of the probability of getting other
iterms correct or wrong for any given value of 8. We know this because
of the assurption of local independence.* M~

12.5 Therefore, the probability of an examinee getting item 1 correct
and item 2 wrong is P1Q. The probability of getting both iters wrong
s Q;Qy.° Getting item 1 correct and item 2 wrong is the response
pattern U=10. Therefore, P(U=IQ)=P102, P(U=00)=Q0,, P(L=01)=Q;P,,
and P(U=11)=P1p2, : ‘ “

Similarly, for three items for a given 0, if:

1

f=2 )

L

N .
H
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then

9 -
Likelihood 77 B“QY

=
—
por—
(s
——
©
—
i

000 Q;Q,Q3 = .7 x .4 x .2 = .056

001 Q,Q,P; = .7 x .4 x .8 = .224

010 Q,P‘,.Q3 = .7 x .6 x..2=.084

) »”
100 P,0203 =.3x .4x.2=.,024
011 Q/Pzpa =.7x .6 x.8= .33
\ 101~ P/sza =.3x .4x .8=.096
\ 110 P,l3203=.3x.6x.2=.036 ‘ | /./.'
N———— . -
111 P/ P2P3 = .3 X .6 x.8=.144
Table 12.5

The *ikelihood of each possible response pattern for a
given @ where the P,(6) is as given in Section 12.5.

12.6 These probabilities are called likelihoods (and wrétten L(U}8)).

Each Tikelihood is the conditional probability of a response
pattern (U) given @, i.e. L(Uj8). The general formula for a like-
lihood is ‘y/}

L (ule)=n" ,p;”Q;"“
i=
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' ’ Upm I-U
.The upper case Greek letter n"means the product of Mhe 7? G, s
where i goes from 1 to n (n = the # of items in the test)} just as,

~in statistical notation E means the sum of a semes of frumbers
where i goes from 1 tc n.

—

When U_i =1 , W )
v 7/~ ! s DL =P
; P/UQ,,' “.P'e. =P, 0/.__/’-/’./,/..77,
When u. = o ‘ N
| PLQI“= PR} = PPQI2 1402 @i
When u; = 1, the Q; drops out, and when'u]. = 0, thegpi .drops out.

1

Thus, PYQ"“is just a convenient mathematical way of getting rid of
the P or Q depending on the value of u;. For a three-item test the
hkehhood of U 011, '

L(u=0ll e)aw puqQiY -
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N Y 7 43 !
I
© R P % Pe Qi (u=0i0fa). L(aju)
I - T
-3.0 .29 711 .36 64t .21 79 71 x .36 x 79 = 202\ .169
-2.5 .32 .681}.39 .61| .22 .78 .68 x .39 x. .78 = .207 .173
2.6 .37 .63|.45 .55 .25 .75 .63 x .45x.75% .213 .17
1.5 .50 .501.60 .400 .30 .70 .50 x .60 x .70 =.210 .176 _
-1.0. .62 .38.1.77 .23 .38 .62  .38x .77 x .62=.181 .15]
0.5 77 .23 (.90 .10 .50 .50 .23 x .90 x .50 = .104 087
0.0 .8 .12 .97 .03\.59 .41 .12 x .97 x .41 = .048 040
0.51.93 .07 .99 .00 .70 .30 .07 x .99 x .30 = .021 .08
1.0 (.97 .03 (.9 .01 .79 .21 .03x.99x .21 = .006 001
1.5 .98 .02{.99 .01 .87 .13 .02 x.99 x .13 = .003 000
2.0 .99 .01 .99 .01,.91 .09 .01 x .99 x .09 = .000 .000
2.5 (.99_ 01 .99 .01, 35 .05 .01 x.99 x .05=.000 000 |
- ' | | XL(Ule) =1.195 1000
" Table 12.7

The method of calculating the Maximum Likelihood
- Estimate of @ from a test of 3 items for an examinee
with the response pattern, U = 010.
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12.7 When we give a test, we get each examinee's response pattern,

and we want his 6. L(UJ8) is not what we waut, since we already. have
U. What would help us estimate an examinee's @ is just the reverse,
i.e. L(BJu). -

——

Fortunately, Bayes' Theorem allows us to get-L(8JU) from L(ufe).

L(]e)
:sL(U,é»

L«9|L»=

To use Bayes' Theorem we have to get the L(U[B) at several points un
the 8 scale. How many points we use is determined by how accurately
we want to estimate 8.

To show how this is done, L(U=010|9) is calculated in Table 12.7
- for three hypothetical items at 12 vélues of 0.

The total of the L(U]6)s isEL(UIB) . The richt column shows
L(8|u)= L(U]Q)/ZL(UIG). Any examinee, no matter what his 9, could
conceivably have a U = 010 in this three-item test. There is a finite
probabiTity of U = 010 at every 6.

- However, the Tikelihood of an examinee having U = 010 varies
considerably with 8. An examinee with 620.0 is unlikely to have
U =010. In fact, only 6% of examinees with 8 20.0 will have U = 010.

Note: The proponents of Maximum Likelihood Estimation do not agree with
the use of Bayes' Theorem in this explanation.




A graph of the likelihoods (for U = 010) would look like Figure

t':_ _ #\frﬂ -
L(‘\’) I \" e
“H FH - E:_\(ifj:: SRgEREe:
CHLEEE T s L T
5 -2 -1 09 | L P8 3

Figure 12.7. The graph of the likelihoods in Table
12.7, called the likelihood function.

This curve is called the 1likelihood funetion.

If you had to guess. the © of an examinee with U = 010, what @
would you guess from the information in Table 12.7? You should guess
his @ = -2.0 because. the 1ikelihood of U = 010 is greater at 0 = -2.0
than at any other 0. Therefore, you would be right more often than if
you cuessed aﬁy other 8. By choosing the 9_wfth the greatest likeli-
hood, you have chosen the 6 with the raximum Tikelihood. - And that is
the Maximum Likeli‘i00d method of estimating 8! That's all there is to

it.

§5
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Now Took at the L(UJ8) column. At whish value of @ is L(ule)
greatest? It is at @ = -2.0, the same as the O with the maximum L (6]
UJ. That will always be the case because the L(8y)'s are just the
L(U)8)'s divided by the constant §:L(U|6). So the '@ with the. maximum
L(8lU) will always be the same as the © with the maximum L(uje).

-Therefore, it is not necessary to divide by £L(UJ8) in order to find
the 8 with the maxirum Tikelihood.

.Singe we divided by 3 L(U}6) in order to apply Bayes' Theorem,
we find that Bayes' Theorer is not necessary for raximur likelihood
estimation. . ' .

" Another short cut is to take the logarithm of the P ‘and Q
and add them, instead of mu1t1p1y1nc the P 's and Q1 . Thg sum of the

Togarithms will also always be maximum at the same value of €. A graph
of the log likelihoods is called the Tog likelihood function. The log

Tikelihood function will always be highest at thc same 8 at which the-

Tikelihood function is highest.

It should be noted that, in this example, you, would be right
in estimating 6 = -2.0 only 17.8% of the time and wrong 82.2% of the
time. But this is true only because the test had only three items.
With a longer test there would be one 6 &t which the Tikelihood is
much greater than any other. c

12.8 Table 12.8 shows the maximum Tikelihood method of estimat’ng

@ for a test made of the four items whose IRF's ere shown in Figure
6.17. .

1) across the top are 17 values of ©

2) under the ©'s are the P(8)'s for each of the four items.

3) the item numbers and parameters are in the top left corner.

4) down the left side are the 16 possible: response patterns for
four items and the raw (# right) score represented by the response

patterns.

&6
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4 < dbility/Knowledue Seale

~ Sponse pattems from a teg camposed of four real

itezss, (All likekhoods are multiplied by 1000 to
reduce decimal values), '

‘\",\-8
K
[tem .
'R ERE el fd 3 00 PLT Rl L0 -0 -3 dood s bl ooy ]
76| 1.801.00 {17 Q0 ol 0] .00 008 J00) L00] L0000 .00 f.00 |00 fLos s a8 ] g6 | gy
Look=-96p. 2o pIE = f30 |33 foor [os s e fom ) oen oes L ooe Lose | oo KT IR TR TH KT
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624 =.05]:15 bo ) ] el ] SR I T 1 ) I IR R 1 I A BT
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Table 2.8 ‘ '
An illstration of the MLE of § for 4 possible re- ’



(5) in the body of the table are the L(U}8)'s for each
possible U for the 17 values of 8. Each L(U}8) is
multiplied by 1000 to eliminate decimal values.

(6) underlined in each row is the maximum :(Uf8)

(7) down the right side are the values of @ where the
underlined maximum Tikelihoods occur. These 8's ar~ the
maximum likehood estimates (MLE) of 8 for each of the 16

possible U.

Note that the MLE for U = 0000 is - oo, and the MLE for U = 1111
is + 00. That is a characteristic of the MLE. The MLE will not give a
finite estimate of @ unless the examinee has missed at least one jtem
and answered at least one item correctly. This limitation is not
serious because raw scores of 0% or 100% are usually rare.

The MLE of 8> 2.7 is due to the limited range of 6 used in this
example. A Tlarger range of 8 would yield a more precise MLE of 8.

The many cells with L(UJ8) = 0 in thc body of Table 12.8 are due
to the very unusual item #17.

12.9 Now compare in Table 12.8 the raw scores on the left with the
MLE's on the'right. You can see that a raw score of 1 represents
esvfrom -2.3 to +2.0, an extreme range! A raw score of 2 represents
Os from -1.3 to greater than +2.7. A raw score of 3 represents 9's
from +1.3 to greateF than +2.7.

The extreme‘range of @, depending on the U's represented by a
single raw score, demonstrates well the inadequacy of using raw
score as an estimate of ability. The inadequacy of raw score as an
es.imate of ability is due to tke fact that raw score cannot dis-
tinguish chance success from knowiedge success on an item. In
contrast, the MLE takes guessing into account by using the additional
infoifation in the response pattern.
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CHAPTER 13

Bayesian Modal Estimation of @

13.1 The Bayesian Modal method of estimating 8 takes up where the MLE
stops. The proponents of the Bayesian Modal method (called Bayesians)
reason that if the distiibution of 8 is known or assumed, then that
knowledge or asstmption provides additional information which can be
used to more accurately estimate 6.

13.2 Bayesians assume that @ is distributed normally. The assumption
vof normality means that the probability of any randomly-chosen examince
having a 8 at the extremes is less than his probability of having a

8 located near the mean. The assumption of normality is made on an a
priori basis (i.e. before empirical evidence). Thus, it is-called tie

‘normal "prior" distribution.

13.3 Suppose the Iikelihood of 91’U is very close to the 11ke11hood of

_92’U but that there are many more examinee's at 8 ‘than at 8;. In
" this case we would be r1ght more often by estimating 6 at 92 than at

8;. In doing so we would, in effect, be we1ght1ng our likelihood by
the number of examinees at-the two 8 values. If we take this idea to

its logical extreme, we should weight all 1ikelihoods by the proportion
" of examinees at each value of 8 in orcer to reduce our errors.

. 13.4 By assum1ng a norma] distribution of 8 we can weight the like-,

1ihood by the re]at1ve proportions of area under the normal’ curve. .,
To do this we merely multiply the area within the interval of the normal curve’

at 8, designated JN{0,1), times L(UI8). Tapie 13.4 shows how this is done

30
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8 = Ability/Knowledge Scale

An illstration of the Buyesian Modal Estimate of §
for o' possible response pattemns from a test com-
of fourrealitems. (All ikelthoods are multipied
by 10,000 to reduce decimal vaiues),
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using the likelihoods from Table 12.€.

(1). the top row are points of @ which are midpoints of
. intervals of 8. '
(2) the 2nd and 3rd rows are the limits of the intervals. -
(3) the 4th row is the proportion of area under the normal
curve and within the interval. ] _
(4) in the body of the table esch column is the area in the 4th
row mulitiplied by the corresponding likelihood from Table 12.8
(times 100,000 to remove decimal values, i.e., L(U}8) x N(0,1}).

(5) " the largest value in each row is underlined.

(6) the @ for the underlined 1ike1ihoodSJ@re in the right
column. These are the Bayesian Modal Estimates (BME) of O.

The BME is called modal because, when we choose tﬁe larcest value
in each row, we are choosing the mode of the distribution of L(UJ6) x

IN(0,1).

13.5 Bayesian Modal Estimates are more conservative than MLEs (con-
servative means closer to zero, the mean of the normal prior distri-

bution). MNote that with U=0000 and U=1111, the BMEs of O are
finite. The finiteness of O estimates of BME when qither all or

no items ar> answered correctly is a minor advantagé of “BME.

v

- "*Note: There are several computational errors in Table 13.4. Howev
these errors do not affect the explanation of the concepts involve
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13.6 There is an active controversy between the Bayesiansland the
proporents of the MLE. The Bayesians argue that MLE is the same as

a BME, if @ is assumed to be distributed rectangularly. (A rectan-
gular distribution of 8 means that there are equal numbers of exam-
inees at all @ values, even atv+oo and -00). And so, say the Bayesians,
since a normal distribution of @ is more reasonable to assume than a
rectangular distribution, the BME is a more accurate estimate of 8.

The proponents of MLE argue that the coincidence of the MLE
(which assumes no distribution of @) being the same as a BME with
rectangular distribution is irrelevant. The important thing is that
MLE makes no assumption about the distribution of 8, whereas BME makes
the additional assumption, which will be sometimes' false.*

13.7 I shall not take sides in this.matter, because for me the point
is mout. The only computer program available to me at present is
OGIVIA-3 (See Chap. -15), which uses the BME. Therefore, I shall
continue to use BME until I have a program which uses MLE. At that
time I shall have to make a-decision. A

13.8 Another type of Bayesian estimation is called Owen's Bayesian,
after its inventor, R. L. Owen (1975). The Owen's Bayesian method
used primarily in tailored testing (See Chap. 17).

+] apologize to both sides of this complex issue for thfs meager

representation of their positions. ™.
~
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CHAPTER 14
Assumptions

14.1 There are 4 basic assumptions of IRT. The first of these is a
minor assumption. % is an assumption of any test theory and withou.
which there would be no justification for testing.

Assumption #1: The.Know-Correct Assumption: if the examinee
knows the correct answer to the item, he will answer it carrectly.*
We have probably all violated this assumption while taking tests by
marking a different choic than we 1ntended to mark. Occasionally,
an examinee will inadver ent]y skip an item, and then mark all the
" the wrong places. This is merely a clerical

res of his: answe
error, but there is no provision for it in any test theory. Another
way to state the first assumption is: if he got the item wrong, 2

then he did not know *the answer.

\
L

14.2 Assumption #2: The Normal Ogive Assumption: The IRF takes the
form of the nor&a] ogive. This is the prob]em, mentioned in Se_tion
3.3, which deterred Lord's work for 10 years. The difficulty lay with
3 parts of the IRF.

a. The lower asymptote
b. The upper asymptote ’
c. The middle or rapidly rising part of the IRF

’,

| *The reader should take careful note that the inverse of this assump-
tion i§ NOT made. <That is, it is NOT ASSUMED that if the examinee
gets the item correctyhe knows the answer. I emphésize this distinc-
tion because many persons upon first reading of assumption #1 misread ~*
it as its inverse. | .

\le T : % 95




(1) As previcusly noted, the c-value of an IRF is often not
i/A. This is the case with observed parts of the lnwer asyrptote.
But what about the unobserved part<? 1f an item from the SAT with
¢ = .09 were given to extréme]y low B persons such as kindergarten
children or mentally retarded persons, would the Tower tail of the
IRF rise to 1/A? |

t

(2) It has been charged by;Hoffmaﬁ 1962), that tests may
penalize extremely high'abiIity persons, because they know too mich.
That is, they consider factors far beyond the intended scope of the
item, and therefore get it wrong. If that were the case, then -the IRF
woukd curve down away from the upper asynﬁfote at hich @'s, ‘This has

been called the Banesh Hoffmann Effect.

(3) It was not known that.thg IRF was. monotonic, and that its
- general shape was that of a normal ogive.

In 1965 Lord published a massive study with a sample size greater
than 100,000. Specifically, .. found: ‘ :

&. the Tower tail of the IRF did not rise for almost all items.
" The very few items that did rise, did so to a very small

—

extent. RN
b. no;évidence of the Banesh Hoffman Effect.

c. good indications that the IRF ig strictly monotonic.

-
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